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ABSTRACT

We describe and evaluate adaptive conditional bias–penalized cokriging (CBPCK) for improved multi-

sensor precipitation estimation using rain gauge data and remotely sensed quantitative precipitation esti-

mates (QPE). The remotely sensed QPEs used are radar-only and radar–satellite-fused estimates. For

comparative evaluation, true validation is carried out over the continental United States (CONUS) for

13–30 September 2015 and 7–9October 2016. The hourly gauge data, radar-only QPE, and satelliteQPE used

are from the Hydrometeorological Automated Data System, Multi-Radar Multi-Sensor System, and Self-

Calibrating Multivariate Precipitation Retrieval (SCaMPR), respectively. For radar–satellite fusion, condi-

tional bias–penalized Fisher estimation is used. The reference merging technique compared is ordinary

cokriging (OCK) used in the National Weather Service Multisensor Precipitation Estimator. It is shown that,

beyond the reduction due to mean field bias (MFB) correction, both OCK and adaptive CBPCK additionally

reduce the unconditional root-mean-square error (RMSE) of radar-only QPE by 9%–16% over the CONUS

for the two periods, and that adaptive CBPCK is superior toOCK for estimation of hourly amounts exceeding

1mm. When fused with the MFB-corrected radar QPE, the MFB-corrected SCaMPR QPE for September

2015 reduces the unconditional RMSEof theMFB-corrected radar by 4%and 6%over the entire andwestern

half of the CONUS, respectively, but is inferior to theMFB-corrected radar for estimation of hourly amounts

exceeding 7mm. Adaptive CBPCK should hence be favored over OCK for estimation of significant amounts

of precipitation despite larger computational cost, and the SCaMPR QPE should be used selectively in

multisensor QPE.

1. Introduction

Accurate real-time quantitative precipitation estima-

tion (QPE) is a prerequisite for accurate water forecasting.

With the widespread use of weather radar systems,

multisensorQPEusing ground-based radar and rain gauge

data is now a routine practice in many parts of the world.

Given the increasing availability of various real-time

satellite QPE products (AghaKouchak et al. 2011;

Habib et al. 2009, 2012; Huffman et al. 2007, 2017;

Joyce et al. 2004; Okamoto et al. 2005; Sorooshian

et al. 2000; Turk and Miller 2005; Vicente et al. 1998),

effective utilization of satellite data for multisensor

QPE is an increasingly important topic (Ashouri et al.

2015; Gourley et al. 2011; Kalinga and Gan 2010; Prat

and Nelson 2013). Numerous efforts have been made

to reduce systematic and random errors in multi-

sensor QPE via bias correction and multivariate anal-

ysis (Kondragunta et al. 2005; Nelson et al. 2010; Prat et al.

2014, 2015; Seo et al. 2010; Smith and Krajewski 1991;
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Smith et al. 1996; Vasiloff et al. 2007). Here, by bias

correction, we mean multiplicative or additive correc-

tion applied to the raw gridded precipitation data at an

effective spatiotemporal scale larger than a single grid

box or a time step. By multivariate analysis, we mean

data assimilation with multivariate observation equa-

tions with or without a dynamical model. Many bias

correction and multivariate analysis techniques involve

minimizing mean square error (MSE) or error variance

under unbiasedness (Ciach et al. 2000; Goudenhoofdt

and Delobbe 2009; Gandin 1966; Seo and Breidenbach

2002; Seo 1998a,b; Smith et al. 2006).

It is well known in statistics and econometrics that, in

the presence of observation error, variance minimiza-

tion tends to introduce negative and positive biases, or

conditional bias (CB), over the upper and lower tails of

the predictands, respectively (Fuller 1987; Seber and

Wild 1989; Hausman 2001). In regression, the above

effect is referred to as regression dilution, which re-

sults in attenuation bias in the regression coefficients

(Hughes 1993; Frost and Thompson 2000). Such bias

may not pose an issue when the prediction is made for

the same predictands via the same regression model

using new observations from the same observing systems.

In QPE, however, the objective is to estimate true pre-

cipitation amounts as accurately as possible so that they

may be used as observed initial or boundary conditions

in a wide range of applications. Because precipitation

observations almost always have significant uncertainties,

particularly at high spatiotemporal resolutions, presence

of CB in QPE is the norm rather than the exception.

Therefore, addressing CB is an important topic in

multisensor QPE.

One may, in general, differentiate the CB into Types

I and II. The Type-I CB, defined as E[XjX̂5 x̂]2 x̂,

where X, X̂, and x̂ denote the unknown truth, the es-

timate, and the realization of X̂, respectively (Joliffe

and Stephenson 2003), is associated with false alarm.

The Type-II CB, defined as E[X̂jX5 x]2 x, where x

denotes the realization of X, is associated with failure

to detect an event. Whereas the Type-I CB may be

reduced by calibration, the Type-II CB cannot (Wilks

2006; Seo et al. 2018). Ciach et al. (2000) found that

minimizing the MSE in radar rainfall estimates in-

creases the CB, and that, when estimating extremes is

of interest, there is a trade-off to consider between

minimizing the MSE and reducing the CB. To address

the detrimental effects of the Type-II CB on esti-

mating extremes, Seo (2013) introduced a new opti-

mal linear estimation method that minimizes the

weighted sum of error variance and expectation of

the CB squared. When cast in the form of kriging, the

method yields CB-penalized kriging (CBPK), which

has been shown to broadly outperform conventional

kriging in the prediction of high flows and estimation

of heavy to extreme rainfall (Brown and Seo 2013; Seo

2013; Seo et al. 2014; Kim et al. 2018). When cast in the

form of the Kalman filter (KF), the method yields the

CB-penalized KF (Seo et al. 2018; Shen et al. 2019)

and, in ensemble form, the CB-penalized ensemble

KF (Lee et al. 2019).

Though the CB-penalized estimation techniques sig-

nificantly improve performance over the tails, they do

not minimize the MSE in the unconditional sense. This

deterioration in unconditional performance may be re-

duced by prescribing the weight to the CB penalty

adaptively based, for example, on the best available

estimate of the unknown true state (Kim et al. 2018;

Shen et al. 2019); if the best estimate is near the median

or in the tails of the distribution, one may reduce the

weight close to zero or to a large value, respectively.

When there exist large observational uncertainties or

the precipitation field has limited predictability, how-

ever, the above approach may not be able to identify the

state of the system with sufficient accuracy and consis-

tency to be effective.

In this work, we introduce adaptive CB-penalized

optimal estimation for merging rain gauge data and

radar-only or radar–satellite-fused QPE, which ex-

plicitly optimizes the weight for the CB penalty in

real time. The specific optimal linear estimation

technique considered is CB-penalized cokriging

(CBPCK; Kim et al. 2018). The resulting technique is

referred to as adaptive CBPCK. The outcome sought

is improved estimation over the tails of the distribu-

tion of precipitation while performing comparably

to ordinary cokriging (OCK) in the unconditional

sense. We then comparatively evaluate adaptive

CBPCK with OCK used in the National Weather

Service’s (NWS)Multisensor Precipitation Estimator

(MPE; Habib et al. 2013; Kitzmiller et al. 2013;

Nelson et al. 2016; Seo et al. 2010). As part of the

evaluation, we also assess the incremental value, in

reference to the radar-only QPE, of 1) rain gauge–

based mean field bias (MFB) correction of radar-only

QPE, 2) merging of rain gauge data and MFB-

corrected radar QPE, 3) fusion of MFB-corrected

SCaMPR QPE with MFB-corrected radar QPE, and

4) merging of rain gauge data and radar–satellite-

fused QPE. The main contributions of this paper are

development and comparative evaluation of adaptive

CBPCK, assessment of the incremental value of MFB

correction, fusion, and merging, and advances in

the understanding of the CB in multisensor QPE and

its correction. The rest of this paper is organized

as follows. Section 2 describes the data used. Section 3
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describes the methods used. Section 4 presents the

results. Section 5 provides the conclusions and future

research recommendations.

2. Data used

Two analysis periods are used: 7–9 October 2016 and

13–30 September 2015. Figures 1 and 2 show the radar-

only precipitation totals. The first period includes

HurricaneMatthew in the East Coast, weakly organized

convective storms in the central United States, and a

coastal storm in the Pacific Northwest. The second pe-

riod includes generally convective events in the Pacific

Northwest, Midwest, Northeast, and Southeast of the

United States. The rain gauge data used are the hourly

observations collected through the Hydrometeorologi-

cal Automated Data System (HADS; Kim et al. 2009)

operated by the NWS. Figure 3 shows the gauge loca-

tions, which total over 21 000. The HADS is a real-time

data acquisition, processing, and distribution system

supporting the NWS’s Flood and Flash Flood Warning

programs. The system acquires raw hydrologic and

meteorological observations throughout the United

States from the Geostationary Operational Environ-

mental Satellites (GOES) Data Collection Platforms,

most of which are owned and/or operated by various

federal, state, and local agencies.

The hourly radar QPE used are from theMulti-Radar

Multi-Sensor System (MRMS; Zhang et al. 2011,

2016) at 1-km resolution. MRMS is a system of auto-

mated algorithms that integrate data from multiple

radars, surface and upper air observations, lightning

detection systems, and satellite and numerical weather

forecast models. The system generates a suite of 2D

multisensor products for monitoring and short-term

prediction of hail, wind, tornado, QPE, convection, ic-

ing, and turbulence. The radar precipitation estimates

used in this work are the operational reflectivity-only

MRMSQPE referred to as Q3RAD (Cocks et al. 2017).

The hourly satellite QPE used in the study was from

the Self-Calibrating Multivariate Precipitation Re-

trieval (SCaMPR; Kuligowski 2002, 2013; Kuligowski

et al. 2013) at 4-km resolution. SCaMPR uses GOES

infrared data for predictor information, and calibrates

them against microwave-based rain rates. The algorithm

performs discrimination of rain versus no rain using

discriminant analysis, calibrates precipitation rate using

regression, optimizes the regression using nonlinear

transformation of the predictors, and estimates loss of

hydrometeors due to evaporation below the cloud base

FIG. 1. Radar-only precipitation map for 7–9 Oct 2016. The horizontally overlapping and vertically elongated

rectangles, indicated as Tiles 1–11, are the analysis domains used in the MRMS for parallel processing. The first 6

tiles (black dotted lines) cover the full CONUS and the last 5 (red dotted lines) straddle the first 6 to reduce the edge

effects. Note that Tiles 1 and 6 are wider than the others. The precipitation map is obtained by averaging all

overlapping estimates over the CONUS.
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in dry environments. In this work, all multisensor QPE

operations are carried out for each of the 11 hori-

zontally overlapping and vertically elongated rectan-

gular analysis domains, or tiles, used in the MRMS

for parallel processing. The first 6 tiles cover the full

CONUS and the last 5 straddle the first 6 to reduce

the edge effects (see Figs. 1 or 2). The final analysis is

obtained by averaging all overlapping estimates over

the CONUS.

3. Methods used

This section describes the multisensor QPEmethods

used in this work. Figure 4 shows the schematic of the

estimation process which is described below in detail.

a. Bias correction of gridded QPE

The MRMS radar-only and SCaMPR QPEs

(September 2015 only for the latter) are first MFB-

corrected for each tile using the respective gridded

QPEs and all available gauge data within the tile. The

procedure used is the MFB correction algorithm of

Seo et al. (1999) which has been in operation in theMPE

since the mid-2000s. In theMPE, the algorithm operates

for each radar and updates the radar umbrella-wide

biases at multiple temporal scales of aggregation

ranging typically from hourly to multiannual. The

bias estimated is the multiplicative correction factor,

bk 5
Ð
Ac
Gk(u) du/

Ð
Ac
Rk(u) du, to be applied to the

radar-only QPE spatially uniformly where bk de-

notes the MFB in the gridded QPE at the kth hour,

Ac denotes the precipitation area, and Gk(u) and

Rk(u) denote the gauge and radar precipitation at lo-

cation u, respectively. To estimate bk, the procedure

uses all available (including posting-delayed) collocated

and synchronous pairs of positive gauge and positive

radar precipitation observations, and updates bk in real

time at multiple time scales via exponential smoothing

(Schweppe 1973). Conceptually, the smoothing opera-

tion amounts to recursively estimating age-weighted

moving averages of gauge and radar precipitation

observations over time windows of different lengths.

The updated bias associated with the smallest time

scale is then chosen as the final estimate among those

with an effective sample size greater than the user-set

minimum. In this way, a shorter- and longer-term

bias is used in gauge-rich and gauge-poor areas, re-

spectively. For further details, the reader is referred

to Seo et al. (1999).

Unlike in the MPE, here we estimate bk for an entire

tile which is much larger than the typical effective

coverage of a single S-band radar such as the Weather

Surveillance Radar-1988 Doppler version. The above

choice is made necessary by the fact that the MRMS

radar-only QPE is already a mosaic of data from mul-

tiple radars (Zhang et al. 2016). MFB correction for the

FIG. 2. As in Fig. 1, but for 13–30 Sep 2015.
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SCaMPR QPE is completely analogous. Given the

large latitudinal dimension of the tiles, multiple

storms with disparate biases may exist in a single tile.

In such cases, the effectiveness of MFB correction

as implemented in this work is likely to be reduced.

Performance assessment under different tile sizes,

however, was beyond the scope of this work and is

left as a future endeavour.

b. Merging of rain gauge data and gridded QPE

We use OCK and CBPCK to estimate the true

precipitation amount at an arbitrary location, u0, us-

ing rain gauge observations at ui, i 5 1, . . . , ng, and

remotely sensed QPE at ui, i 5 ng 1 1, . . . , ng 1 nr,

where ng and nr denote the number of rain gauges and

remotely sensed QPE, respectively. Though referred

to as cokriging, the formulation described here applies

to kriging as well except that in the latter all obser-

vations are from a single observing system. Dropping

the time index for brevity, we write the linear esti-

mator for gauge precipitation at an ungauged loca-

tion u0 as

Z
0
*5�

n

i51

l
i

m
0

m
i

Z
i
, (1)

�
n

i51

l
i
5 1: (2)

FIG. 4. Schematic of the merging and fusion processes used (see section 3 for details).

FIG. 3. Rain gauge locations.
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In the above, Z0
* denotes the precipitation estimate at u0,

n denotes the total number of data used in the esti-

mation, n 5 ng 1 nr; Zi, i 5 1, . . . , ng, denote the

nearest gauge observations; Zi, i5 ng1 1, . . . , ng1 nr,

denote the nearest remotely sensed precipitation es-

timates; li, i 5 1, . . . , n, denote the weights for

Zi, i 5 1, . . . , n; and m0 and mi denote the climato-

logical mean precipitation at locations u0 and ui,

respectively, for which we use the monthly PRISM

climatology (Daly et al. 1994). The constraint, Eq. (2),

renders the estimate Z0
* in Eq. (1) unbiased in the

mean under the assumption that the gridded QPE

is unbiased relative to the gauge observations. Im-

plicit in Eq. (1) is the assumption that the MFB-

corrected radar QPE is climatologically unbiased

(Seo et al. 2010).

OCK and CBPCK differ mainly in the calcula-

tion of the weights, li, i 5 1, . . . , n in Eq. (1). Where-

as OCK minimizes the error variance of Z0
*,

JEV 5E[(Z0
*2Z0)

2
], CBPCK minimizes the weighted

sum of JEV and the expectation of the CB squared,

JCB 5E[(E[Z0
*jZ0]2Z0)

2
], that is, J 5 JEV 1 aJcB

where a denotes the weight given to the CB penalty. If

a 5 0, CBPCK reduces to OCK. One may hence con-

sider CBPCK as generalized OCK. The CBPCK sys-

tem is given by (Kim et al. 2018)

�
n

j51

l
j
(r

ij
1ar

i0
r
j0
)s

i
s
j
5 (11a)r

i0
s
i
s
0
, i5 1, . . . , n ,

(3)

�
n

i51

l
i
5 1, (4)

where rij denotes the (cross-) correlation between the

two variables at ui and uj; and si and sj denote the

standard deviation of the two variables at ui and uj, re-

spectively. The objective function J associated with the

CBPCK solution from Eqs. (3) and (4) is given by (Kim

et al. 2018)

J5 (11a)

�
s2
0 2�

n

i51

l
i
r
i0
s
i
s
0

�
2m , (5)

where m denotes the Lagrange multiplier. Because J

reflects not only the error variance but also the CB

penalty, it is larger than JEV for a. 0. To evaluate JEV,

we decompose J into JEV and aJcB to obtain:

J
EV

5�
n

i51
�
n

j51

l
i
l
j
r
ij
s
i
s
j
2 2�

n

i51

l
i
r
i0
s
i
s
0
1s2

0 (6)

Because CBPCK does not minimize (unconditional)

error variance, Eq. (6) is necessarily larger than the OCK

error variance for a . 0. The optimal weights, li, i 5
1, . . . , n, are functions of the covariance among the

gauge observations, covariance among the remotely

sensed QPE, and cross covariance between the gauge

observations and remotely sensed QPE (see Seo

1998a,b for details). Due to the generally large skew-

ness in hourly precipitation and larger errors near the

median than OCK, CBPCK produces negative esti-

mates more frequently than OCK in areas of very light

precipitation (see Seo 2013; Seo et al. 2014). To address

this, we apply the correction procedure of Kim et al.

(2018) in which the negative and positive CBPCK es-

timates are set to zero and adjusted by a scaling factor,

respectively. For details, the reader is referred to Kim

et al. (2018) and Seo et al. (2014).

The CBPCK solution depends on a. If there is little

or no CB, we have a ’ 0, and OCK suffices. If there

is a large CB due to small predictability in the pre-

cipitation field, sparsity in the rain gauge network, or

large uncertainty in the remotely sensed precipitation

data (Seo 2013), one may expect CBPCK with a large

a to produce more accurate estimates and error vari-

ances than OCK. Because there are multiple sources

of CB, prescribing a a priori is a difficult proposition.

In adaptive CBPCK, the weight a is optimized in real

time in a data-driven manner such that the MSE, or

any other performance measure or measures of

choice, are optimized. To that end, we add the fol-

lowing adaptive steps to CBPCK: 1) discretize the

possible range of a, 2) given a value of a, use CBPCK

to estimate precipitation at all gauge locations within

the tile in a cross-validation mode, 3) repeat step 2 for

all values of a, 4) identify the MSE-minimizing a, and

5) perform CBPCK analysis over the entire tile using

the ‘‘optimal’’ a. Because the sample size from cross

validation may vary greatly from hour to hour within

the same tile, and from tile to tile for the same hour,

the resulting a is subject to potentially large sampling

uncertainties. The time series plots of a identified in

this way often show unrealistically large fluctuations

compared to the characteristic time scales of CB

that may be expected from the predictability condi-

tions. For the above reason, we employ exponential

smoothing of the error statistics at multiple time

scales in a manner analogous to that used in MFB

correction.

Because changing a has similar effects to changing

the covariance structure [see Eq. (3)], it is possible that

optimizing a may not only correct for the CB but also

compensate for possibly incorrect covariance struc-

ture. Differentiation of the two, however, is not read-

ily possible because the true covariance structure is

not known in the real world. Synthetic experiments to
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address the above is beyond the scope of this work and

is left as a future endeavor. In practice, the lack of

differentiation may not pose a significant issue because

the uncertainty in the covariance structure is likely to

be a contributing factor to the CB as well. In this work,

we exponentially smooth the second-order statistics

used in CBPCK in a manner analogous to that used in

MFB correction. In this way, all statistical parameters

used are subject to similar levels of sampling un-

certainty. Section 3d describes how the statistical pa-

rameters are estimated.

c. Radar–satellite fusion

The MRMS radar-only and the SCaMPR QPEs

are first MFB-corrected individually as described in

section 3a. The resulting gridded QPEs are fused via

simple estimation (SE; Rafieeinasab et al. 2015). In

this procedure, the 1-km hourly MRMS radar-only

estimates are aggregated to the spatial scale of the

4-km hourly SCaMPR estimates. The two estimates

are then fused at each SCaMPR grid box according

to Eq. (7) where the time index has been dropped

for brevity:

X
U
* 5wR

U
1 (12w)S

U
. (7)

In the above, RU denotes the upscaled MFB-corrected

radar QPE, SU denotes the MFB-corrected SCaMPR

QPE, w denotes the optimal weight to be determined,

andXU
* denotes the hourly fused estimate at 4-km scale.

The weight w is obtained via adaptive CB-penalized

optimal linear estimation which minimizes the linearly

weighted sum of the error variance and the Type-II CB

squared:

J5E[(X
U
* 2X

U
)
2
]1a

f
E[(E[X

U
* jX

U
]2X

U
)
2
] , (8)

where af denotes the weight given to the CB penalty

term for fusion. Seo (2013) arrives at the following

Fisher-like solution for the CB-penalized optimal linear

estimate XU
* and the error variance S:

S5B[ÛTL21U]21 , (9)

X
U
* 5 [ÛTL21U]21ÛTL21Z5 [w(12w)]

"
R

U

S
U

#
. (10)

In the above, the (2 3 1) modified unit vector Û, the

modified observation error covariancematrixL, and the

scaling constant B are given by

ÛT 5 (11a
f
)UT , (11)

L5R2a
f
(a

f
1 1)Us2

XU
UT , (12)

B5a
f
s2
XU

ÛTL21Û1 (11a
f
) . (13)

In the above, s2
XU

denotes the variance of XU , and the

observation error covariance matrix R is given by

R5

2
4Var[R

U
2X

U
] 0

0 Var[S
U
2X

U
]

3
5 . (14)

If af 5 0, Eqs. (11) and (12) reduce to the classical

Fisher (i.e., maximum likelihood) solution (Schweppe

1973). The diagonality of R reflects the very reason-

able assumption that the observation errors in RU and

SU are independent. To estimate Var[RU 2 XU] and

Var[SU 2 XU] in Eq. (14), we update the error sta-

tistics of the radar and SCaMPR QPEs versus gauge

precipitation in real time via exponential smoothing.

The weight af is optimized in real time analogously to

adaptive CBPCK. To obtain the hourly fused estimate

at 1-km scale,XU
* is disaggregated under the assumption

that the 1-km hourly radar QPE perfectly captures the

spatial variability of precipitation within each grid box

of the SCaMPR QPE:

X
i,j
* 5

X
U
*

R
U

R
i,j
, R

U
. 0; i5 1, . . . , 4; j5 1, . . . , 4:

(15)

In the above, Ri,j and Xi,j
* denote the radar and

fused estimates at the ijth pixel, respectively. By

replacing XU
* in Eq. (15) with Eq. (7), we may rewrite

Xi,j
* as

X
i,j
* 5

�
w1 (12w)

S
U

R
U

�
R

ij
5wR

i,j
1 (12w)S

i,j
* ,

R
U
. 0; i5 1, . . . , 4; j5 1, . . . , 4 , (16)

where

S
i,j
* 5

R
i,j

R
U

S
U
, R

U
. 0; i5 1, . . . , 4; j5 1, . . . , 4:

(17)

Unlike in merging, the weight w does not vary

in space owing to the gridded nature of the input

QPEs, which renders the fusion algorithm extremely

simple. It is important to note that, whereas rain

gauge data are used to estimate the observation

error statistics, they are not used in the fusion itself

unlike in OCK or CBPCK. As such, the timeliness of
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the rain gauge data is not as critical to fusion as it is

to merging.

d. Estimation of statistical parameters

As implemented in this work, both OCK and CBPCK

require modeling spatial covariance structures of in-

termittency and inner variability of precipitation

(Seo 1998a,b). Under the assumption of local homo-

geneity, we equate the mean fractional coverage of

precipitation with the probability of precipitation

(Seo and Smith 1996). As in Seo (1998b), we assume

sg 5 sr;mIg 5mIr; mg 5mr; rg(jhj)5 rc(jhj)5 rr(jhj);
and rIg(jhj) 5 rIc(jhj) 5 rIr(jhj), where mIg, mg, sg,

rIg(jhj), and rg(jhj) denote the mean fractional cover-

age, unconditional mean, standard deviation, indicator

correlation, and conditional correlation of gauge pre-

cipitation, respectively, with h being the separation

distance, the same five statistics for MFB-corrected

remotely sensed precipitation are subscripted by r, and

rc(jhj) and rIc(jhj) denote the conditional and indicator

cross correlation, respectively. The indicator and con-

ditional correlation model the inner variability (i.e.,

variability of positive precipitation) and intermittency

of precipitation (i.e., variability of precipitation versus

no precipitation), respectively.

The correlograms are estimated using the hourly

radar-only QPE (Seo 1998b). It is impractical to

model fully spatiotemporally varying covariance

structures in real time due to insufficient data, mod-

eling complexity, and large computing requirements.

In the current implementation of OCK in the

MPE, the correlation structures are not estimated in

real time, but are based on climatological estimates

(Seo 1998b; Seo and Breidenbach 2002). In this

work, we assume the exponential model (Journel and

Huijbregts 1978) for both intermittency and inner

variability, and estimate the parameters for the cor-

relation model for each hour for each tile. To reduce

computing time, we estimate the correlation co-

efficients only for the first few lags, from which the

nugget effect and the range are estimated (Journel

and Huijbregts 1978). Though the exponential model

very often provides the best fit for hourly radar and

rain gauge precipitation among widely used correlogram

models (Seo and Breidenbach 2002; Seo et al. 2014),

it may not be reasonable for stochastically highly-

regular (i.e., mean-square differentiable) precipitation

fields (Vanmarcke 1983) or orographic precipitation

(Chua and Bras 1982). In addition, the correlation

structure may not be homogeneous within a tile given

the large latitudinal dimension (see Fig. 1). As such,

the covariance models are subject to potentially sig-

nificant uncertainties, which may also contribute to

the CB. Additional research is needed to improve

real-time modeling of the spatiotemporally varying

covariance structure of precipitation over large areas.

Because we are using ordinary, rather than simple,

cokriging (Journel and Huijbregts 1978), specifying the

radius of influence requires additional care. In this

work, we set the default radius of influence for locating

the neighboring gauge observations to be 2.5 times

larger than the larger of the indicator and conditional

correlation scales. In this way, weakly correlated rain

gauge observations may also be included in the estima-

tion process. It is well known that the predictability

of precipitation depends strongly on the magnitude

of precipitation. In general, the predictability peaks

around the median and decreases toward the tail

ends of the distribution of precipitation amount (Seo

1996). Because high-resolution positive precipitation

is highly skewed, the predictability tends to decrease

rather quickly as the precipitation amount increases.

The above dependence may be modeled explicitly

using nonlinear estimation techniques such as indi-

cator cokriging (Brown and Seo 2013). They are, how-

ever, computationally very expensive, and require large

amounts of data for parameter estimation. In this work,

we model the above dependence by parameterizing the

radius of influence with the radar precipitation amount

at u0 as follows:

ROI5ROI
def

exp

�
2
Z

R
(u

0
)

L

�
, (18)

where ROI denotes the radius of influence, ROIdef
denotes the default radius of influence, ZR(u0) denotes

the radar precipitation at u0, and L denotes the charac-

teristic precipitation amount (mm). If radar precipitation

does not exist at u0, the default radius of influence is used.

The maximum number of neighboring gauge observa-

tions used in the estimation process is 30 to limit the

amount of computation. The actual number of rain

gauge observations used (i.e., those within ROI), how-

ever, is generally much smaller, particularly in gauge-

sparse areas. The fractional coverage of precipitation is

estimated by dividing the number of positive observa-

tions by the total number of observations within ROIdef.

e. Evaluation

For comparative evaluation of the different QPEs

considered, we carried out true validation, which

means that, for 13–30 September 2015, we randomly

selected 4%–5% of all available gauge observations

within each tile for each hour, withheld them for

validation, and used the rest for parameter estima-

tion. The gauge network density varies greatly from
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one tile to another, and within each tile (see Fig. 3). In

gauge-poor areas, setting aside more gauges would

keep the neighboring gauges too distant to provide a

predictive skill that may actually exist. The choice of

4%–5% represents a compromise between retaining

as much of the actual gauge network as possible and

increasing the sample size for validation. For large-

sample validation, the above experiment was repeated

5 times, each time withholding previously unwithheld

gauges. The total number of data points obtained in

this way for validation is over 20 000 for the 11 tiles.

For 7–9 October 2016, 3%–4% of the gauges were

withheld. The experiment was then repeated 10 times

using previously unwithheld gauges. The total number

of data points obtained for validation is over 19 000 for

this analysis period. Comparative evaluation for the

October 2016 case is focused on addressing the fol-

lowing questions: 1) How much does the MFB-

corrected radar QPE improve over the radar-only?

2) How much do the OCK estimates from merging

gauge data and MFB-corrected radar QPE improve

over the latter alone? and 3) How much does adaptive

CBPCK improve over OCK? Comparative evaluation

for the September 2015 case is focused on addressing:

1) How much do the SE estimates from fusing the

MFB-corrected SCaMPR and radar QPEs improve

over the latter alone? 2) How much do the OCK es-

timates from merging gauge data and MFB-corrected

gridded QPE improve over the latter alone? and

3) How much does adaptive CBPCK improve over

OCK? For both cases, we also address how the above

comparative performance may vary according to the

magnitude of precipitation being estimated.

For evaluation metrics, we use the root-mean-

square error (RMSE), its decomposition, and per-

cent reduction in RMSE relative to reference QPE.

The RMSE collectively measures biases in the mean

and in standard deviation, and strength of correlation.

Both OCK and CBPCK are unbiased estimators,

and their performance with respect to the three at-

tributes above has also been reported in Seo et al.

(2010), Seo et al. (2014), and Kim et al. (2018). The

percent reduction in RMSE, or PRiRMSE(QPEeval),

is defined as

PRiRMSE(QPE
eval

)5
RMSE(QPE

ref
)2RMSE(QPE

eval
)

RMSE(QPE
ref
)

3 100, (19)

where RMSE(QPEeval) and RMSE(QPEref) denote

the RMSEs of the QPE under evaluation and the

reference QPE, respectively. MSE decomposition

(Murphy and Winkler 1987; Nelson et al. 2010) is

given by

MSE5 (m
e
2m

o
)2 1 (s

e
2s

o
)2 1 2s

e
s
o
(12 r

e,o
),

(20)

where me and mo denote the mean of the estimate and

verifying observation, respectively, se and so denote the

standard deviation of the estimate and verifying obser-

vation, respectively, and re,o denotes the correlation

between the estimate and verifying observation.

MFB correction and merging address the first- (i.e.,

systematic) and second-order (i.e., random) errors, re-

spectively. One may consider the CB a 1.5th-order error

in that it is systematic but exists only over the tails of

the distribution. First-order errors impact the accuracy

across the board. As such, one may expect MFB cor-

rection to have the largest impact if significant first-

order errors exist. The focus of this paper is on

addressing the CB. We are hence interested in assessing

the accuracy of the merged QPE relative to that of

the MFB-corrected radar, in addition to that of the

radar-only QPE. For this reason, we present the results

of both MFB correction and merging relative to radar-

only QPE so that the improvement due solely to each

may be ascertained.

4. Results

This section presents the merging results for 7–9

October 2016, and 13–30 September 2015, and the fusion

and merging results for 13–30 September 2015.

a. Radar–gauge merging

The performance of the procedures described above

depends on the predictability of the precipitation field,

the skill in the remotely sensed QPE, and the gauge

network density. To assess the first two factors be-

tween the two periods, we first examine the indicator

and conditional spatial correlation scales of radar

QPE, and the (spatial) lag-0 indicator and conditional

cross correlation between gauge observation and ra-

dar QPE as estimated in the simulated real-time

mode. Figure 5 shows the histograms of the above

four parameters for the entire analysis periods over

the CONUS. Because these estimates reflect different

types of precipitation events in different phases of
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development and dissipation under a wide range of

conditions for radar observation of precipitation, the

sample statistics necessarily vary greatly. Nonethe-

less, it is readily seen that all four parameters for

September 2015, particularly the conditional corre-

lation and conditional correlation scale, are signifi-

cantly smaller than those for October 2016, an

indication that the precipitation fields in the first pe-

riod are characterized by significantly smaller pre-

dictability. One may hence expect merging to be more

potent for October 2016, and the CB to be larger for

September 2015.

1) 7–9 OCTOBER 2016

This period includes precipitation from storms in

three largely different regions: extreme amounts from

Hurricane Matthew along the Atlantic Coast, signifi-

cant amounts from a relatively weakly organized con-

vective storm in the central United States, and

significant amounts from a coastal storm in the Pacific

Northwest (see Fig. 1). Figure 6a shows the RMSE

of the radar-only, MFB-corrected radar, OCK, and

adaptive CBPCK estimates over the CONUS condi-

tional on the verifying observed hourly precipitation

exceeding the amount shown on the x axis. The values

on the y axis at x 5 0 represent the RMSE conditional

on the verifying observation being nonzero, which is

very close to the unconditional RMSE. As such, we

refer to the results for x5 0 and x. 0 as unconditional

and conditional performances, respectively. Also

shown in the figure is the sample size whose axis is

shown at the right end of the plot, also on a logarithmic

scale. Figure 6b shows the percent reduction in RMSE

of the MFB-corrected radar, OCK, and adaptive

CBPCK estimates relative to the radar-only QPE.

In both figures, the conditioning threshold is cut off

at about 34mm, above which the results are very

noisy due to the small sample size. Figure 6b may be

FIG. 5. Histograms of (a) lag-0 indicator correlation, (b) lag-0 conditional correlation, (c) indicator correlation

scale, and (d) conditional correlation scale for 13–30 Sep 2015, and 7–9 Oct 2016.
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summarized as follows. Both OCK and adaptive

CBPCK reduce the unconditional RMSE of radar-only

QPE by about 16% whereas MFB correction provides

no reduction. Adaptive CBPCK performs comparably to

OCK unconditionally, an indication that adaptively opti-

mizing a does produce the desired effect of improving the

unconditional performance of CBPCK. For precipitation

amounts exceeding 1.5mm, adaptive CBPCK improves

over OCK. At the conditioning amount of 24.5mm, MFB

correction, OCK, and adaptive CBPCK reduce the con-

ditional RMSE of radar-only QPE by about 13%, 22%,

and 25%, respectively. The relatively modest improve-

ment by adaptive CBPCK over OCK is a reflection that

the CB is generally not very large in this period owing to

the large spatial predictability in the well-developed pre-

cipitation systems in the east.

To show how the different estimates may compare, we

show in Fig. 7 the scatterplots of radar-only (upper left),

MFB-corrected radar (upper right), OCK (lower left),

and adaptive CBPCK (lower right) estimates versus the

verifying gauge precipitation. The data points are color-

coded by region so that the performance for different

storms within the CONUS may be examined. The gen-

erally positive impact of MFB correction of radar QPE

is readily seen in the figure as reflected by a nearly di-

agonal quantile–quantile (Q–Q) plot, but at the expense

of inflating large, overestimated radar-only precipitation.

Such miscorrections occur because biases in radar-

only QPE may be spatially nonuniform (Seo and

Breidenbach 2000) or nonlinear, that is, precipitation

magnitude dependent, which cannot be addressed by

MFB correction alone. The lower panel shows that both

OCK and adaptive CBPCK greatly reduce the scatter

around the diagonal. Overall, the OCK and adaptive

CBPCK estimates are very similar as Fig. 6 would

suggest. For the eastern region, which encompasses

Hurricane Matthew, the two estimates show little

difference, an indication that there is little CB present

owing to the large predictability, dense gauge networks,

and generally favorable conditions for radar observation

of precipitation. Though small, noticeable differences are

seen in the plotting areas of 40 , truth , 60 (mm) and

20, estimate, 40 (mm) for the central region, and 0,
truth , 20 (mm) and 0 , estimate , 20 (mm) for the

western region, where a number of adaptive CBPCK

estimates are closer to the diagonal than the OCK

estimates.

2) 13–30 SEPTEMBER 2015

This analysis period includes multiple mostly con-

vective events of relatively low predictability in the

PacificNorthwest,Midwest, Northeast, and Southeast of

the United States (see Fig. 2). Figure 8 is the same as

Fig. 6 but for September 2015. Figures 8a and 8b may be

summarized as follows. MFB correction reduces the

unconditional RMSE of radar-only QPE by about 9%.

Both OCK and adaptive CBPCK are able to increase

the margin of reduction to about 17%. For these lower

predictability events, however, the effectiveness of

merging is reduced as the conditioning amount in-

creases. For truth exceeding about 18mm, the OCK

estimates are no longer more accurate than the MFB-

corrected radar in the mean squared error sense. The

adaptive CBPCK estimates, on the other hand, perform

better than the better of the OCK and the MFB-

corrected radar estimates for all conditioning amounts.

FIG. 6. (a) RMSE of radar-only, MFB-corrected radar, OCK, and adaptive CBPCK estimates for 7–9 Oct 2016,

conditional on truth exceeding the amount on the x-axis; (b) as in (a), but for percent reduction in RMSE of radar-

only QPE by MFB-corrected radar, OCK, and adaptive CBPCK estimates.
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The larger margin of improvement by adaptive CBPCK

over OCK reflects the presence of a larger CB due to

smaller spatial predictability in this period. About 65%

of the true-validated estimates in Fig. 8 are associated

with a 5 0, that is, the adaptive CBPCK estimates are

the same as the OCK estimates.

To assess the quality of the adaptive CBPCK esti-

mates exclusively, it is necessary to consider only those

estimates associated with nonzero a. To that end, we

plot in Fig. 9 the RMSEs of the radar-only, MFB-

corrected radar, OCK, and adaptive CBPCK estimates

(upper panels), and the percent reduction in RMSE of

the radar-only QPE by the MFB-corrected radar, OCK

and adaptive CBPCK estimates (lower panels) for dif-

ferent ranges of positive a and conditioning amounts of

truth. Also shown in the upper panels are the 90%

confidence intervals for the OCK and adaptive CBPCK

estimates obtained via bootstrapping. Figure 9 indicates

that, when the CB is present (i.e., a . 0), the adaptive

CBPCK estimates are superior to the OCK estimates

for truth exceeding 25.4mm at a significance level of

0.10, but that, when all amounts of truth are considered,

the improvement is not statistically significant. The lat-

ter is not at all surprising given the fact that smaller

amounts of precipitation, for which little CB exists, far

outnumber large amounts. Figure 10 shows the scatter-

plots of the estimates versus the observed. Reduction of

bias and scatter due to bias correction and merging, re-

spectively, is readily seen. For this period, larger dif-

ferences are seen between the OCK and adaptive

CBPCK estimates than in October 2016, particularly

in the eastern region. The general direction of change is

that the CBPCK estimates tend to decrease and increase

very small and larger OCK estimates, respectively.

FIG. 7. Scatterplots of (a) radar-only, (b) MFB-corrected radar, (c) OCK, and (d) adaptive CBPCK estimates for

7–9 Oct 2016 vs truth.
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Figures 11a, 11b, and 11c show the (me 2 mo)
2, (se 2

so)
2, and re,o terms in the MSE decomposition of

Eq. (20), respectively. They are for the radar-only,

MFB-corrected, OCK, and adaptive CBPCK estimates

conditioned on the truth exceeding 0, 6.4, 12.7, and

25.4mm. In each figure, the sample statistics for the

September 2015 and October 2016 periods are plotted

on the x and y axes, respectively. For each condi-

tioning threshold, the sample statistics for the 4 dif-

ferent estimates are connected with a dashed line. The

most desirable estimates would place the sample sta-

tistics of (me 2 mo)
2 and (se 2 so)

2 closest to the

lower-left corner in Figs. 11a and 11b, respectively,

and that of re,o closest to the upper-right corner in

Fig. 11c. Figure 11 indicates that the MFB-corrected

estimates are least biased in the mean and standard

deviation, followed by the CBPCK estimates, and that

the CBPCK estimates are most strongly correlated

with the truth, followed by the OCK estimates. The

first result is not very surprising in that the sole pur-

pose of MFB correction is to reduce bias in the mean.

Also, being conditional expectation operators, OCK

and adaptive CBPCK necessarily reduce variability

due to averaging. One may avoid such smoothing

by performing conditional simulation (Deutsch and

Journel 1992; Seo et al. 2000) using OCK or adaptive

CBPCK in an ensemble framework. Such an ap-

proach, however, is computationally too expensive to

be practical for real time QPE. Figure 11 indicates

that OCK and adaptive CBPCK reduce MSE over

MFB-corrected radar by a combination of smoothing

and improved correlation with the truth [i.e., reduced

se and increased re,o in Eq. (20), respectively],

and that the adaptive CBPCK estimates are supe-

rior to the OCK estimates in all categories except in

unconditional bias in the mean and conditional bias in

the standard deviation for the 25.4-mm threshold.

b. Fusion of SCaMPR QPE

Figure 12 is the same as Fig. 8 but for the radar-only,

MFB-corrected radar, SE-fused, OCK, and adaptive

CBPCK estimates for September 2015 over the

CONUS. The SE results are based on fusing the MFB-

corrected radar andMFB-corrected SCaMPR estimates

as described in section 3c (see also Fig. 4). TheOCK and

adaptive CBPCK results are based onmerging the gauge

data with the fused QPE. Figure 12 indicates that the

MFB-corrected radar and adaptive CBPCK provide sig-

nificantly better conditional performance than the others.

Figure 12b shows that the percent reduction in un-

conditional RMSEby theMFB-corrected radar, SE-fused,

OCK, and adaptive CBPCK over the radar-only QPE

is about 8%, 12%, 18%, and 18%, respectively. As the

conditioning amount increases, however, the accuracy of

the OCK estimates deteriorates and, at the conditioning

amount of about 15mm, it falls below that of the fused

estimates. The adaptive CBPCK estimates, on the other

hand, remain better than the MFB-corrected radar for

conditioning amounts of up to 25mm. The above results

demonstrate the adaptive CBPCK’s ability to improve

conditional performance over OCK while performing

comparably to OCK in the unconditional sense.

We now assess the impact of the MFB-corrected

SCaMPR QPE in radar–satellite fusion by comparatively

evaluating the SE-fused versus the MFB-corrected radar

estimates. Note that, in this comparison, we are not

assessing the relative value of the radar- and SCaMPR-

only estimates, but that of the MFB-corrected radar

and MFB-corrected SCaMPR estimates. Accordingly,

additional factors such as the rain gauge network

FIG. 8. As in Fig. 6, but for 13–30 Sep 2015.
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density, spatiotemporal variability of precipitation, the

skill in radar-only QPE, and the efficacy of MFB cor-

rection come into play. Figure 12b shows that MFB

correction reduces the RMSE of the radar-only QPE

by about 8% over the CONUS, and the fused QPE

additionally reduces the RMSE by about 4%. The tile-

specific results indicate that, for the western half of the

CONUS (i.e., Tiles 1–3), the additional reduction by

the fused QPE is over 6% whereas for the eastern half

it is only about 3%. Compared to the western half of

the CONUS, the eastern half has significantly denser

rain gauge networks (see Fig. 4), and is generally more

favorable for radar QPE. The latter point may be seen

in the tile-specific correlation coefficient of radar-only

QPE with rain gauge observations; for September

2015, the correlation is 0.64, 0.44, 0.66, 0.77, 0.77, and

0.77 for Tiles 1, 2, 3, 4, 5, and 6, respectively. It is

surmised that, for the eastern half, the combination of

the skillful radar QPE and the dense rain gauge net-

works is able to produce significantly more accurate

MFB-corrected radar QPE, and that the comparative

skill of the MFB-corrected SCaMPR estimates is too

small to improve on the former significantly. The

western region, on the other hand, has a substantially

lower density of rain gauges and are not very favor-

able for radar QPE. As such, the MFB-corrected

SCaMPR is able to provide larger improvement. Co-

examination of Figs. 8 and 12 indicates that, whereas

FIG. 9. (a) RMSE of radar-only, MFB-corrected radar, OCK, and adaptive CBPCK estimates and 90% confi-

dence interval of the OCK and adaptive CBPCK estimates, for 13–30 Sep 2016, conditional on a exceeding the

value on the x-axis for truth exceeding zero; (b) as in (a), but for truth exceeding 25.4mm; (c) as in (a), but for

percent reduction in RMSE of radar-only QPE by MFB-corrected radar, OCK, and adaptive CBPCK estimates;

and (d) as in (c), but for truth exceeding 25.4mm.
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the addition of the SCaMPR QPE does improve the

accuracy of the final merged QPE in the unconditional

sense, in particular in the western half of the CONUS,

the conditional performance deteriorates. Figures 8b

and 12b show that the added value of the SCaMPR

estimates is lost when the precipitation amount ex-

ceeds about 1.5mm, above which merging rain gauge

data and MFB-corrected radar QPE via adaptive

CBPCK is superior. The above findings suggest that

the SCaMPR product should be used selectively in

multisensor QPE.

Computationally, adaptive CBPCK requires solving

an (ng 1 nr)-dimensional linear system multiple times

whereas OCK requires solving a comparable system only

once. In the above, ng and nr are usually on the orders

of 10 and 1, respectively, and a may range from 0 to 4

incremented by 1.With the naïve optimization ofa used in

this work, adaptive CBPCK is hence several times more

expensive than OCK. To improve understanding of the

dependence of the CBPCK solution ona, and to develop a

more effective and computationally efficient approach for

its optimization, additional research is needed.

5. Conclusions

The principal conclusion of this work is that, to pro-

duce multisensor estimates that are more accurate

than the ingredient quantitative precipitation estimates

(QPE) for all precipitation amounts, it is necessary to ad-

dress the conditional bias (CB), and that adaptive condi-

tional bias–penalized cokriging (CBPCK) described in this

paper improves estimation of significant amounts of pre-

cipitation by explicitly considering theCB. It is shown that,

beyond the reduction in root-mean-square error (RMSE)

FIG. 10. As in Fig. 7, but for 13–30 Sep 2015.
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due to mean field bias (MFB) correction, both ordinary

cokriging (OCK) and adaptive CBPCK additionally re-

duce the unconditional RMSE of radar-only QPE by 16%

and 9%over the continental United States (CONUS) for

the more and less predictable 7–9 October 2016, and 13–

30 September 2015, events, respectively, and that adap-

tiveCBPCK improves overOCK for estimation of hourly

precipitation exceeding about 1mm. Jointly, MFB cor-

rection and adaptive CBPCK reduce the RMSE of the

radar-only QPE by about 16%–26% for the more pre-

dictable 7–9 October 2016, events and by about 10%–

17% for the less predictable 13–30 September 2015,

events for all ranges of precipitation amounts.

It is shown that, for the September 2015 events, fusing

the MFB-corrected radar QPE with the MFB-corrected

SCaMPR QPE reduces the unconditional RMSE of

radar-only QPE by about 12% over the CONUS

whereas the reduction by MFB-corrected radar QPE

alone over radar-onlyQPE is about 8%. For the western

half of the CONUS, where the rain gauge network is

sparser and the radar QPE is less skillful, the margin of

reduction increases to 6% from the above 4%. The

conditional performance of the fused QPE, however,

falls below that of the MFB-corrected radar QPE as the

conditioning amount exceeds about 7mm of hourly

precipitation. The above suggests that the SCaMPR

product should be used selectively in multisensor QPE.

The error variance estimates from adaptive CBPCK

were not used in this work. Coutilizing both the estimate

and the error variance is likely to improve the optimi-

zation of a. Additional evaluation is needed to assess

the performance of adaptive CBPCK further, and to

FIG. 12. As in Fig. 8, but for radar-only, MFB-corrected radar, SE-fused, OCK, and adaptive CBPCK estimates.

SE fuses the MFB-corrected radar and MFB-corrected SCaMPR. OCK and adaptive CBPCKmerge the SE-fused

estimates and rain gauge data.

FIG. 11. Decomposition of MSE of radar-only, MFB-corrected, OCK, and adaptive CBPCK estimates for 13–30 Sep 2015 (x axis) and 7–9

Oct 2016 (y axis) into (a) (me 2 mo)
2, (b) (se 2 so)

2, and (c) re,o conditioned on truth exceeding 0, 6.4, 12.7, and 25.4mm.

2362 JOURNAL OF HYDROMETEOROLOGY VOLUME 20

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/23/21 09:03 PM UTC



optimize its parameters. We note here that the algo-

rithm described in this work is being comparatively

evaluated against Stage IV (Nelson et al. 2010) in real time

for possible operational implementation in the Multi-

Radar Multi-Sensor (MRMS) system (Tang et al. 2019),

and the results are to be reported in the near future.
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APPENDIX

List of Acronyms and Abbreviations

CB Conditional bias

CBPCK Conditional bias–penalized cokriging

CBPK Conditional bias–penalized kriging

CONUS Continental United States

GOES Geostationary Operational Environmental

Satellites

HADS Hydrometeorological Automated Data System

KF Kalman filter

MFB Mean field bias

MSE Mean square error

MPE Multisensor Precipitation Estimator

MRMS Multi-Radar Multi-Sensor System

NWS National Weather Service

OCK Ordinary cokriging

QPE Quantitative precipitation estimate

Q–Q Quantile–quantile

RMSE Root-mean-square error

SCaMPR Self-Calibrating Multivariate Precipitation

Retrieval

SE Simple estimation
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